The Potential for Seaweed Culture to Provide Useful Products and Ecosystem Services

World production farmed seaweed in 2010 – 19 mmt

99.4% from seven countries in Asia

Six main species (Photos 1-5 courtesy Prof. Chen Jiaxin)

1. Laminaria japonica (Kombu)

3. Hizikia (Sargassum) fusiforme

Laminaria japonica (Kombu) farm - China

Porphyra (nori) farm in Jiangsu Province, China

Undaria (Wakame) farming in Dhalian, China

Eucheuma farm in Zanzibar

Most important use is FOOD > 70%

- Wild harvest & now farming kelp Saccharina latissima for
- Kelp noodles, salad & slaw cut.

"Kelp waits to take its place in America's stomachs"

Going Green on msnbc.com

Other useful products – seaweed composition

Composition varies with species, time of year & conditions

- Water 75 -90 %
 - <u>% dry wt</u>
- Carbohydrates (polysaccharides structural &
- storage) alginates, agar, carrageenan, mannitol. 30 60
- Proteins (digestibility inhibited by polysaccharides). 5-15
- \square Lipids (mostly polyunsat. fatty acids, ω 3 & ω 6). 1-5
- ☐ Minerals (Ash calcium, potassium, iodine). 15-30
- Carotenoids & vitamins
 Yes

In most cases all the biomass is usable

Marine Hydrocolloids: Alginate, Carrageenan, Agar – use 15 – 20% world seaweed production

SOAP

Other products and byproducts: soil conditioners, fertilizer, feed, medical, nutraceuticals, paper

Bio-energy – Ocean Food & Energy Farms

- Proposed by North & Wilcox 1968 and led to:
- □US Marine Biomass Program '72 81 which lapsed because:
- Early in the technology
- Need for very large volumes
- Byproducts undervalued
- '70s oil crisis came to an end

DEVELOPMENTS IN AQUACULTURE AND FISHERIES SCIENCE, VOLUME 16

Elsevier 1987

SEAWEED CULTIVATION
FOR RENEWABLE
RESOURCES

Biofuels now in favor again

- Microalgae > biodiesel
- Macroalgae > methane by biodigestion
- Ethanol and butanol by fractionation of fermentable sugars
- Potential for fuel / feed co-products – especially aquaculture feeds.

Energy Research Center Netherlands

Seaweed Biorefinery project

Bio Architecture Lab www.ba-lab.com

GMO microbial (E. coli) digestion of seaweeds to 'renewable intermediaries' (Wargacki - Science 335, p308 Jan. 2012)

Other biofuel projects

Biomara, EU

Sintef, Norway

Sea6 Energy, India

Current Status of Biofuel Production Technologies						
Technology	Laboratory	Pilot plant	Demonstration plant	Market		
Sugar/starch ethanol				†		
Biodiesel - esters				†		
Lignocellulosic ethanol						
Biobutanol		\rightarrow				
Algae biodiesel – lipids to esters	†					

PODenergy USA

ECN Netherlands

A need for perspective

FAO says we need 70% (5 billion mt) more by 2050

We make very poor use of the sea

Protein (g)

□Total wt (g)

Calories

The oceans cover 70% of Earth but yield only 120 million mt (1.5%) of our food.

Yield per hectare / day

Marine	Freshwater	Terrestrial
0.5	8.8	32
3.3	54	1,251
9.3	88	1,384

Source FAO STAT 2003 & Millennium Ecosystem Assessment

Does that make sense? Do we need to do something about it? If so – what?

Based on what we've learned in marine aquaculture

Could we now develop a 'Marine Agronomy' to produce raw materials for food, feed and fuel as agriculture does today?

What could it do for us? How would we value it?

- How much food, feed and fuel might it produce?
- What might be the ecosystem costs / benefits?
- ■What might be the economic benefits in terms of jobs and wealth creation?
- What value would they have, not only today but 25 or 50 years from now?

afristarfoundation.org

Imagine a global industry that by 2050 produced

- □ 500 million mt dry wt seaweed /yr (2x US corn production).
- 6.7% of present world food prodn
- □ 170 x present seaweed prodⁿ needs 14% annual growth.
- □ 10% of the additional food that FAO says we will need.
- Would create jobs for millions of people*

^{*}One billion employed in world agriculture today (FAO)

It would also

- Spare at least 50 million hectares from land clearance.
- But would use similar area at sea: 0.3% of oceans' surface
- □ Spare 500 km³ freshwater / yr (5.5% of FW used by all Ag.)
- Produce about 50 mmt algal protein and 10 mmt algal oil.
- 40 billion gallons of ethanol (3 x present US prodⁿ).

And it would

- Extract 8 million mt N/yr : 14% ann. fertilizer run off.
- ■Use 135 million mt carbon/yr: 6% annual ocean uptake.
- Be unaffected by drought or air temperature.
- Create habitat
- Need no soil cultivation

Nutrient Bioextraction

Graphic & images courtesy Prof. Charles Yarish (U. Conn.)

Long Island Sound

Bronx NY

But "Expansion of seaweed farming is not a panacea"

"It needs ecological approaches to development and an enlightened governance system to be an important solution to global food security" Barry A. Costa-Pierce ecologicalaquaculture.org

No easy solutions to any of our global challenges?

- Climate change?
- Falling water tables?
- World food security?

All involve tough choices & no reason not to begin?

And doing nothing is not an option

Can we make more productive use of the sea?

If so, should we try?